# organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# R. M. A. Pinto,<sup>a</sup> M. Ramos Silva,<sup>b</sup>\* A. Matos Beja<sup>b</sup> and J. A. R. Salvador<sup>a</sup>

<sup>a</sup>Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, 3000-295 Coimbra, Portugal, and <sup>b</sup>CEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal

Correspondence e-mail: manuela@pollux.fis.uc.pt

#### **Key indicators**

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.006 Å R factor = 0.051 wR factor = 0.153 Data-to-parameter ratio = 10.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound,  $C_{29}H_{50}O_4$ , the six-membered rings adopt slightly flattened chair conformations. The five-membered ring has an envelope conformation. The molecules

are linked into chains running along the b axis by  $O-H\cdots O$ 

 $5\alpha$ ,  $6\beta$ -Dihydroxycholestan- $3\beta$ -yl acetate

Received 15 March 2007 Accepted 26 March 2007

### Comment

hydrogen bonds.

As a result of the relatively non-toxic character of bismuth, bismuth(III) salts are considered ecofriendly catalysts suitable for green chemistry (Gaspard-Iloughmane & Le Roux, 2004). The title compound, (I) (Fig. 1), isolated as part of our continuing study on the ring opening of epoxysteroids (Pinto *et al.*, 2006), is an important oxysteroid which can be converted by hydrolysis to the corresponding  $3\beta$ , $5\alpha$ , $6\beta$ -triol, one of the cytotoxic oxysteroids that have remarkable influence on cellmembrane composition and function, apoptosis, signal transduction, and immunomodulation (Schroepfer, 2000; Wielkoszynski *et al.*, 2006), as well as having genotoxic effects that have been detected *in vivo* (Cheng *et al.*, 2005).



The formation of a  $5\alpha,6\beta$ -disubstituted derivative is clearly demonstrated in this study, thus confirming the *trans*-diaxial nature of the nucleophilic ring opening. All ring junctions are *trans*. The six-membered rings have slightly flattened chair conformations, as shown by the Cremer & Pople (1975) puckering parameters [ring A: Q = 0.577 (5) Å,  $\theta = 4.9$  (5) and  $\varphi = 276$  (6)°; ring B: Q = 0.564 (4) Å,  $\theta = 3.0$  (5) and  $\varphi =$ 269 (8)°; ring C: Q = 0.568 (5) Å,  $\theta = 6.6$  (5) and  $\varphi = 274$  (4)°]. The five-membered ring D has an envelope conformation with



#### Figure 1

The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius.

All rights reserved

© 2007 International Union of Crystallography

C13 as the flap atom; the puckering parameters are  $q_2 =$ 0.464 (5) Å and  $\varphi_2 = 185.6$  (6)°. The substituent hydroxy groups are axial to the ring system while the substituents at C3 and C17 are equatorial. The molecules assemble in chains along the b axis via  $O-H \cdots O$  hydrogen bonds (Fig. 2 and Table 1).

# **Experimental**

The treatment of  $5\alpha, 6\alpha$ -epoxycholestan- $3\beta$ -yl acetate (0.222 g, 0.50 mmol) (prepared by epoxidation with *m*-chloroperbenzoic acid) in non-purified benzonitrile (15 ml) with a catalytic amount of BiBr<sub>3</sub> (0.044 g, 0.10 mmol) afforded the title compound (yield 0.092 g, 40%) which was isolated by column chromotography. Colorless single crystals of (I) [m.p. 479-480 K; literature m.p. 479.6-481.6 K (Yates & Stiver, 1987)] suitable for X-ray diffraction were obtained from acetone at room temperature. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  0.67 (s, 3H, 18-H<sub>3</sub>), 1.18 (s, 3H, 19-H<sub>3</sub>), 2.02 (s, 3H, CH<sub>3</sub>CO), 3.54 (br s, 1H, 6α-H), 5.15 (*m*, 1H, 3α-H); <sup>13</sup>C NMR (75.5 MHz, CDCl<sub>3</sub>): δ 71.2 (C3), 75.6 (C5), 76.1 (C6), 170.9 (COO).

Crystal data

| $C_{29}H_{50}O_4$              | V = 1411.7 (2) Å <sup>3</sup>             |
|--------------------------------|-------------------------------------------|
| $M_r = 462.69$                 | Z = 2                                     |
| Monoclinic, P2 <sub>1</sub>    | Cu $K\alpha$ radiation                    |
| a = 12.5293 (13)  Å            | $\mu = 0.55 \text{ mm}^{-1}$              |
| b = 8.6751 (5) Å               | T = 293 (2) K                             |
| c = 14.0660 (16)  Å            | $0.37 \times 0.29 \times 0.22 \text{ mm}$ |
| $\beta = 112.578 (12)^{\circ}$ |                                           |
|                                |                                           |
| Data collection                |                                           |

3074 independent reflections

3 standard reflections

frequency: 180 min

intensity decay: 1%

 $R_{\rm int} = 0.057$ 

1 restraint

 $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^-$ 

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$ 

1490 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Enraf-Nonius MACH3 diffractometer Absorption correction:  $\psi$  scan (North et al., 1968)  $T_{\min} = 0.768, T_{\max} = 0.882$ 9973 measured reflections

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ wR(F<sup>2</sup>) = 0.153 S = 0.993074 reflections 306 parameters

## Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H                                | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|------------------------------------|-------------------------|--------------|-----------------------------|
| $O3-H31\cdots O4^i$         | 0.82                               | 2.05                    | 2.850 (4)    | 164                         |
| Symmetry code: (i) -        | $-x \perp 1$ $y \perp \frac{1}{2}$ | <u>,</u> ⊥2             |              |                             |

Symmetry code: (i) -x + 1,  $y + \frac{1}{2}$ , -z + 2.





Hydrogen-bonding pattern, viewed along a. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

All H atoms were refined as riding on their parent atoms [C-H =0.93-0.98, O-H = 0.82 Å and  $U_{iso}(H) = 1.2U_{eq}(C,O)$  or  $1.5U_{eq}$  (methyl C)]. The absolute configuration was not determined from the X-ray data but was known from the synthetic route. In the absence of significant anomalous scattering, Friedel-equivalent reflections were merged prior to the final refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

This work was supported by Fundação para a Ciência e a Tecnologia (FCT). RMAP thanks FCT for a grant (SFRH/BD/ 18013/2004).

# References

- Cheng, Y. W., Kang, J. J., Shih, Y. L., Lo, Y. L. & Wang, C. F. (2005). Fd Chem. Toxic. 43, 617-622.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands
- Gaspard-Iloughmane, H. & Le Roux, C. (2004). Eur. J. Org. Chem. 12, 2517-2532.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Pinto, R. M. A., Salvador, J. A. R. & Le Roux, C. (2006). Synlett, pp. 2047-2050
- Schroepfer, G. G. (2000). Physiol. Rev. 80, 361-554.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1997). HELANA. Utrecht University, The Netherlands.
- Wielkoszynski, J., Gawron, K., Strzelczyk, J., Bodzek, P., Zalewska-Ziob, M., Trapp, G., Srebniak, M. & Wiczkowsk, A. (2006). BioEssays, 28, 387-398.
- Yates, P. & Stiver, S. (1987). Can. J. Chem. 65, 2203-2216.